5 SIMPLE TECHNIQUES FOR البيانات الضخمة

5 Simple Techniques For البيانات الضخمة

5 Simple Techniques For البيانات الضخمة

Blog Article



يتم تصنيف البيانات الضخمة بثلاث طرق: البيانات المنظمة. البيانات غير المهيكلة. البيانات شبه المنظمة.

توفر مقالة الميزات والمتطلبات الخاصة بنا نظرة ثاقبة حول ما يجب البحث عنه وتصنف بطاقة أداء الأداة القابلة للتخصيص المنتجات في مجالات مثل النص والمحتوى والإحصاءات ووسائل التواصل الاجتماعي والتحليلات المكانية.

التسريبات والاختراقات: البيانات الضخمة قد تكون عُرضة للتسريب أو الاختراق من قبل القراصنة أو المهاجمين.

تحسين سلسلة التوريد: يمكن استخدام البيانات الضخمة لتحسين سلسلة التوريد بتوفير رؤى أفضل حول توقعات الطلب وإدارة المخزون.

التنظيمات القانونية: هناك قوانين ولوائح تنظم استخدام البيانات الضخمة في قطاعات معينة مثل الصحة والمالية.

لكنها ليست بهذه البساطة. تستفيد الأنواع المختلفة من أدوات البيانات الضخمة المتنوعة ولها تعقيدات مختلفة تصاحب العمل مع كل نقطة بيانات فردية مأخوذة من الأثير الهائل.

تشخيص الأمراض وتوفير العلاج المناسب، تحسين إدارة المستشفيات وتوجيه العمليات السريرية

كلما اقتربنا من الوقت الفعلي ، كان ذلك أفضل من حيث الميزة التنافسية للشركات التي تتطلع إلى استخراج رؤى قابلة للتنفيذ وقيمة منها.

يمكن أن تتكون البيانات الضخمة من بيانات منظمة تقليدية أو بيانات غير منظمة أو شبه منظمة. من الأمثلة على البيانات الضخمة غير المهيكلة – والمتنامية باستمرار – البيانات التي ينشئها المستخدم على وسائل التواصل الاجتماعي.

تطور التكنولوجيا والذكاء الاصطناعي: يعتبر الاستفادة من البيانات الضخمة أساسًا لتطور التكنولوجيا والذكاء الاصطناعي. فباستخدام البيانات الضخمة، يُمكن تدريب النماذج الذكاء الاصطناعي وتحسين أدائها في مجالات مثل التعلم الآلي وتحليل البيانات.

تحسين عمليات الأعمال: باستخدام البيانات الضخمة، يمكن للشركات تحسين عملياتها الداخلية بشكل كبير.

البيانات الضخمة تثير العديد من القضايا الأخلاقية وتتطلب الانتباه إلى حقوق الخصوصية، وفيما يلي بعض الأخلاقيات المتعلقة بالبيانات الضخمة وحقوق الخصوصية:

القدرة على التعامل مع مجموعات تيرابايت متعددة من مجموعات البيانات من مصادر متنوعة وتحويلها بنجاح إلى لوحات معلومات توفر رؤى مفيدة وتحليلات لسير العمل تجعل نور الامارات النظام ناجحًا.

تحمل البيانات الكبيرة العديد من العوامل التي تميزها عن البيانات التقليدية. من أبرز تلك العوامل:

Report this page